Weak Tchebyshev-Spaces and Generalizations of a Theorem by Krein

Bernd Stockenberg
University of Duisburg, D-4100 Duisburg, West Germany
Communicated by G. Meinardus

Received September 1, 1977

1. Introduction

Let U be an n-dimensional space of real valued functions defined on some totally ordered set M. We call U a weak Tchebyshev-space, if no $f \in U$ has more than $n-1$ changes of sign. The most important example of a weak Tchebyshev-space is given by the polynomial splines with fixed knots (see [2]). If, in addition, no function $f \neq 0$ in U has more than $n-1$ zeros, i.e., if U is a Tchebyshev-space as well, U is called an oriented Tchebyshevspace. A well known theorem of Krein (see [3]) states that every n-dimensional Tchebyshev-space of continuous functions on an open interval contains an ($n-1$)-dimensional Tchebyshev-space. This result was generalized by Zielke [10] for the case of oriented Tchebyshev-spaces. He supposed (1) that the domain of definition M has no smallest and no greatest element and (2) that between any two points of M there is another point of M. Recently Zalik [8] has shown that the result of Zielke is still valid even without the second assumption (2). On the other hand, every weak Tchebyshev-space of dimension n contains a weak Tchebyshev-space of dimension $n-1$ without any restriction on M (see [6]). It is the purpose of this paper to derive the result of Zalik from this theorem on weak Tchebyshev-spaces. The basic tool is a characterization of a weak Tchebyshev-space U by means of the generalized Vandermonde-determinant. This characterization was shown by Jones and Karlovitz [1] where U consists of continuous functions on a real interval. We generalize their result to the case of weak Tchebyshev-spaces of (not necessarily continuous) functions on arbitrary totally ordered sets. As an application we consider finally the question, if there exist nonnegative functions and positive functions in a weak Tchebyshev-space and in an oriented Tchebyshev-space, respectively.

2. Definitions and Basic Properties

The notion of alternation is one possible basis for the concept of weak and oriented Tchebyshev-spaces (see e.g. $[6,7,10]$).

Definition 1. Let M be a totally ordered set and $f \in \mathbb{R}^{M}$, the space of all mappings from M to \mathbb{R}. We call n points $x_{1}<\cdots<x_{n}$ from M an alternation of f of length n, iff

$$
f\left(x_{i}\right) \cdot f\left(x_{i+1}\right)<0, \quad i=1, \ldots, n-1 .
$$

We can now state the definition of weak and oriented Tchebyshev-spaces.
Definition 2. Let M be a totally ordered set and U an n-dimensional subspace of \mathbb{R}^{M}. U is called a weak Tchebyshev-space (or weak T-space for short), iff no $f \in U$ has an alternation of length $n+1$. If, in addition, U is a Tchebyshev-space (T-space), i.e., if no $f \neq 0$ from U has more than $n-1$ zeros, we call U an oriented Tchebyshev-space (oriented T-space).

Another characterization of weak and oriented T-spaces comes from the generalized Vandermonde-determinant

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}}=\left|\begin{array}{ccc}
f_{1}\left(x_{1}\right) & \cdots & f_{n}\left(x_{1}\right) \\
\vdots & & \vdots \\
f_{1}\left(x_{n}\right) & \cdots & f_{n}\left(x_{n}\right)
\end{array}\right|
$$

The following theorem goes back to Zielke [10].
Theorem 1. Let M be totally ordered and U be an n-dimensional subspace of \mathbb{R}^{M}. Then the following assertions are equivalent:
(1) U is an oriented T-space.
(2) There is a basis f_{1}, \ldots, f_{n} of U with

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}}>0
$$

for arbitrary $x_{1}<\cdots<x_{n}$ in M.
This theorem is an immediate consequence of Theorem 2 below. An analogous characterization of weak T-spaces in the case of continuous functions on a real interval was proved by Jones-Karlovitz [1]. We now show that their assertion is still valid in the more general situation considered here and therefore our definition of weak T-spaces is in agreement with [2] and [8]. The proof is based on the following lemma.

Lemma 1. Let M be totally ordered, U an n-dimensional weak T-space in $\mathbb{R}^{M}, f_{1}, \ldots, f_{n}$ a basis of U and let $z_{1}<\cdots<z_{n-1}$ be points in M such that there are x_{1}, \ldots, x_{n} in M with

$$
\left\{z_{1}, \ldots, z_{n-1}\right\} \subset\left\{x_{1}, \ldots, x_{n}\right\}
$$

and

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}} \neq 0
$$

Let $f \in U$ with $f\left(z_{i}\right)=0, i=1, \ldots, n-1$. Then for arbitrary y_{i}, \bar{y}_{j} with

$$
\begin{aligned}
& z_{i-1}<y_{i}<z_{i} \\
& z_{j-1}<\bar{y}_{j}<z_{j}
\end{aligned} \quad\left(1 \leqslant i \leqslant j \leqslant n, y_{i} \leqslant \bar{y}_{j}\right)
$$

the inequality

$$
(-1)^{i+j} \cdot f\left(y_{i}\right) \cdot f\left(\bar{y}_{j}\right) \geqslant 0
$$

holds. Here we set $z_{0}:=-\infty$ and $z_{n}:=+\infty$.
Proof. Let us assume the contrary: we have y_{i}, \bar{y}_{j} as above with

$$
(-1)^{i+j} \cdot f\left(y_{i}\right) \cdot f\left(\bar{y}_{j}\right)<0 .
$$

Because

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}} \neq 0
$$

there is an $h \in U$ with

$$
h\left(z_{k}\right)=(-1)^{k+i+r} \cdot \operatorname{sign} f\left(y_{i}\right), \quad 1 \leqslant k \leqslant n-1
$$

where $r=1$ in the case $i \leqslant k \leqslant j-1$ and $r=0$ otherwise. Then the function $f+\lambda h$ has for sufficiently small $\lambda>0$ an alternation of length $n+1$ in the increasingly ordered points $z_{1}, \ldots, z_{n-1}, y_{i}, \bar{y}_{j}$. This contradiction ends the proof.

Note that in the case $n=1$ the lemma simply states that no $f \in U$ has an alternation of length 2 .

Lemma 1 is a generalization of the well known fact that a function from an n-dimensional oriented T-space with $n-1$ zeros has constant sign between these zeros and changes sign at each of them (see [10]). We can now prove a result for weak T-spaces which is analogous to Theorem 1.

Theorem 2. Let M be totally ordered and U be an n-dimensional subspace of \mathbb{R}^{M}. Then the following assertions are equivalent:
(1) U is a weak T-space.
(2) There is a basis f_{1}, \ldots, f_{n} of U with

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}} \geqslant 0
$$

for arbitrary $x_{1}<\cdots<x_{n}$ in M.
Proof. (1) \Rightarrow (2). Let f_{1}, \ldots, f_{n} be a basis of U and let $x_{1}<\cdots<x_{n}$ and $y_{1}<\cdots<y_{n}$ be points in M with

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}} \neq 0 \neq \operatorname{det}\binom{f_{1}, \ldots, f_{n}}{y_{1}, \ldots, y_{n}} .
$$

We consider the functions $g_{k}, 1 \leqslant k \leqslant n$, with

$$
g_{k}(x):=\left(\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}}\right)^{-1} \cdot \operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x, x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}} .
$$

Let there exist a j_{0} with $x_{j_{0}} \notin\left\{y_{1}, \ldots, y_{n}\right\}$. Since the g_{k} span U as well, there is a y_{m} with $g_{j_{0}}\left(y_{m}\right) \neq 0$. Clearly $y_{m} \notin\left\{x_{1}, \ldots, x_{n}\right\}$. If we now set

$$
\begin{array}{cc}
z_{i}:=x_{i} \quad \text { for } \quad i=1, \ldots, j_{0}-1, \\
z_{i}:=x_{i+1} \quad \text { for } \quad i=j_{0}, \ldots, n-1, \\
z_{0}:=-\infty, & z_{n}:=+\infty,
\end{array}
$$

and if we set $w_{1}<\cdots<w_{n}$ with

$$
\left\{w_{i} \mid i=1, \ldots, n\right\}=\left\{z_{i} \mid i=1, \ldots, n-1\right\} \cup\left\{y_{m}\right\},
$$

from the relation $z_{i-1}<y_{m}<z_{i}$ it follows that

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{w_{1}, \ldots, w_{n}}=(-1)^{i+1} \cdot g_{j_{0}}\left(y_{m}\right) \cdot \operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}}
$$

From Lemma 1 and from the equality

$$
(-1)^{j_{0}+1} \cdot g_{j_{0}}\left(x_{j_{0}}\right)=1
$$

we see that

$$
(-1)^{i+1} \cdot g_{j_{0}}\left(y_{m}\right)>0
$$

Therefore the two determinants

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}}, \quad \operatorname{det}\binom{f_{1}, \ldots, f_{n}}{w_{1}, \ldots, w_{n}}
$$

are of the same sign $(\neq 0)$. Repeated application of this argument shows that (1) implies (2).
$(2) \Rightarrow(1)$. This implication will not be needed in the following; we therefore refer to [12] for a proof.

Theorem 1 now follows immediately from Theorem 2. It is well known that an n-dimensional subspace U of \mathbb{R}^{M} is a T-space if and only if there is a basis f_{1}, \ldots, f_{n} of U with

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}} \neq 0
$$

for arbitrary x_{1}, \ldots, x_{n} in M (see e.g. [10]).

3. Subspaces of Weak and Oriented Tchebyshev-Spaces

In an earlier paper [6] we have shown the following theorem, which was proved independently from us and with a different method of proof in the special case of continuous functions on a compact real interval by Sommer and Strauss [5].

Theorem 3. Let M be totally ordered and $U \subset \mathbb{R}^{M}$ a weak T-space of dimension $n \geqslant 2$. Then there is a weak T-space V of dimension $n-1$ with $V \subset U$.

We now derive from this theorem the following result due to Zalik [8], which is an improvement of a theorem of Zielke ([10], see also [6]).

Theorem 4. Let M be totally ordered without greatest and smallest element and let $U \subset \mathbb{R}^{M}$ be an oriented T-space of dimension $n \geqslant 2$. Then there is an oriented T-space V of dimension $n-1$ with $V \subset U$.

Proof. By Theorem 3 there is a weak T-space V of dimension $n-1$ with $V \subset U$. We will show that V is already an oriented T-space. To do this, let f_{1}, \ldots, f_{n} be a basis of U with the following properties: (1) f_{1}, \ldots, f_{n-1} is a basis of V with

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n-1}}{x_{1}, \ldots, x_{n-1}} \geqslant 0
$$

for arbitrary $x_{1}<\cdots<x_{n-1}$ (see Theorem 2), (2) for arbitrary $x_{1}<\cdots<x_{n}$ we have

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{x_{1}, \ldots, x_{n}}>0
$$

(see Theorem 1). Let us assume there are $y_{1}<\cdots<y_{n-1}$ in M with

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n-1}}{y_{1}, \ldots, y_{n-1}}=0
$$

We choose $y_{n}>y_{n-1}$ and conclude from

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{y_{1}, \ldots, y_{n}}>0
$$

that there is an i_{0} with

$$
\operatorname{det}\binom{f_{1}, \ldots, f_{n-1}}{y_{1}, \ldots, y_{i_{0}-1}, y_{i_{0}+1}, \ldots, y_{n}}>0
$$

Let

$$
f(x):=\operatorname{det}\binom{f_{1}, \ldots, f_{n}}{y_{1}, \ldots, y_{i_{0}-1}, y_{i_{0}+1}, \ldots, y_{n}, x}
$$

Then $f \in U$ and $f_{1}, \ldots, f_{n-1}, f$ is another basis of U with property (2). Let $y_{0}<y_{1}$. If we now use the relations

$$
\begin{gathered}
f\left(y_{j}\right)=0 \quad \text { for } \quad j=1, \ldots, n-1, \quad j \neq i_{0} \\
(-1)^{n-i_{0}} \cdot f\left(y_{i_{0}}\right)>0
\end{gathered}
$$

and our assumption and expand by the last column we get

$$
\begin{aligned}
0 & <\operatorname{det}\binom{f_{1}, \ldots, f_{n-1}, f}{y_{0}, \ldots, y_{n-1}} \\
& =(-1)^{n+i_{0}+1} \cdot f\left(y_{i_{0}}\right) \cdot \operatorname{det}\binom{f_{1}, \ldots, f_{n-1}}{y_{0}, \ldots, y_{i_{0}-1}, y_{i_{0}+1}, \ldots, y_{n-1}}
\end{aligned}
$$

But since the right side of the last equation is not positive, we have a contradiction.

The proof of Theorem 4 shows that any ($n-1$)-dimensional subspace of an n-dimensional oriented T-space is again an oriented T-space, provided it is a weak T-space and the domain of definition has no greatest and no smallest element.

4. Remarks and Applications

If M is a real interval and U an n-dimensional vectorspace of continuous functions on M, then U is an oriented T-space if and only if U is a T-space. Thus Theorem 4 is a generalization of the result by Krein (see [3]) mentioned
above. Repeated application of Theorem 3 shows that every weak T-space of dimension n has a basis f_{1}, \ldots, f_{n} such that, for any k with $1 \leqslant k \leqslant n$, the functions f_{1}, \ldots, f_{k} span a weak T-space. Similarly, if the domain of definition has no smallest and no greatest element, from Theorem 4 there follows the analogous result for oriented T-spaces. From these remarks one can easily deduce the following theorem on the existence of nonnegative and positive functions in weak and oriented T-spaces.

Theorem 5. Let M be totally ordered and let $U \subset \mathbb{R}^{M}$ be a weak T-space. Then there is an $f \neq 0$ in U with $f \geqslant 0$. If M has no smallest and no greatest element and if U is an oriented T-space in \mathbb{R}^{M}, there is an fin U with $f>0$.

There is a further application in this direction. The following result can also be derived from the Tchebyshev Equioscillation Theorem (see [4]). But when it is shown with interpolation methods only, it can serve as a starting point for a proof of the theorem by Tchebyshev.

Theorem 6. Let U be a T-space in $C[a, b]$. Then there is an $f \in U$ with $f>0$.

Proof. By Theorem 5 there is a nontrivial f in U with $f \geqslant 0$. If x_{1}, \ldots, x_{r} are the zeros of f, then $r \leqslant n-1$ and we can choose $g \in U$ with $g\left(x_{i}\right)=1$, $i=1, \ldots, r$. Then, for sufficiently great $\lambda>0$ we have $\lambda f+g>0$ on $[a, b]$.

Theorem 6 is not valid in the case of halfopen intervals as shown by the simple example $U_{0}=\operatorname{span}\{\sin , \cos \}$ in $C[0, \pi[$. It should be noted that, in general, there is no basis f_{1}, \ldots, f_{n} of U with the property that f_{1}, \ldots, f_{k} span a T-space for $1 \leqslant k \leqslant n$ if U is a T-space in $C[a, b[$ or $C[a, b]$. For various examples in this connection see [11]. We also refer to a paper of Zielke [9] which contains a result on subspaces of periodic Tchebyshev-spaces.

References

1. R. C. Jones and L. A. Karlovitz, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approximation Theory 3 (1970), 138-145.
2. S. Karlin and W. J. Studden, "Tchebycheff Systems. With Applications in Analysis and Statistics," Interscience, New York/London/Sydney, 1966.
3. M. A. Rutman, Integral representation of functions forming a Markov-series, Dokl. Akad. Nauk SSSR 164 (1965), 989-992; English trans., Soviet Math. Dokl. 6 (1965), 1340-1343.
4. A. Schönhage, "Approximationstheorie," de Gruyter, Berlin/New York, 1971.
5. M. Sommer and H. Strauss, Eigenschaften von schwach tschebyscheffschen Räumen, J. Approximation Theory, in press.
6. B. Stockenberg, Subspaces of weak and oriented Tchebyshev-spaces, Manuscripta Math. 20 (1977), 401-407.
7. B. Stockenberg, On the number of zeros of functions in a weak Tchebyshev-space, Math. Z. 156 (1977), 49-57.
8. R. A. Zali, On transforming a Tchebycheff system into a complete Tchebycheff system, J. Approximation Theory 20 (1977), 220-222.
9. R. Zielke, A remark on periodic Tchebyshev-systems, Manuscripta Math. 7 (1972), 325-329.
10. R. Zielke, On transforming a Tchebyshev-system into a Markov-system, J. Approximation Theory 9 (1973), 357-366.
11. R. Zielke, Tchebyshev-systems that cannot be transformed into Markov-systems, Manuscripta Math. 17 (1975), 67-71.
12. R. Zielke, Einige Eigenschaften schwacher Tschebyscheff-Systeme, preprint.
