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1. INTRODUCTION

Let U be an n-dimensional space of real valued functions defined on some
totally ordered set M. We call U a weak Tchebyshev-space, if no JE U has
more than n - 1 changes of sign. The most important example of a weak
Tchebyshev-space is given by the polynomial splines with fixed knots
(see [2]). If, in addition, no functionJ =1= 0 in U has more than n - 1 zeros,
i.e., if U is a Tchebyshev-space as well, U is called an oriented Tchebyshev­
space. A well known theorem of Krein (see [3]) states that every n-dimensional
Tchebyshev-space of continuous functions on an open interval contains an
(n - I)-dimensional Tchebyshev-space. This result was generalized by
Zielke [10] for the case of oriented Tchebyshev-spaces. He supposed (1) that
the domain of definition M has no smallest and no greatest element and (2)
that between any two points of M there is another point of M. Recently
Zalik [8] has shown that the result of Zielke is still valid even without the
second assumption (2). On the other hand, every weak Tchebyshev-space of
dimension n contains a weak Tchebyshev-space of dimension n - 1 without
any restriction on M (see [6]). It is the purpose of this paper to derive the
result of Zalik from this theorem on weak Tchebyshev-spaces. The basic tool
is a characterization of a weak Tchebyshev-space U by means of the general­
ized Vandermonde-determinant. This characterization was shown by Jones
and Karlovitz [1] where U consists of continuous functions on a real interval.
We generalize their result to the case of weak Tchebyshev-spaces of (not
necessarily continuous) functions on arbitrary totally ordered sets. As an
application we consider finally the question, if there exist nonnegative
functions and positive functions in a weak Tchebyshev-space and in an
oriented Tchebyshev-space, respectively.
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2. DEFINITIONS AND BASIC PROPERTIES

The notion of alternation is one possible basis for the concept of weak and
oriented Tchebyshev-spaces (see e.g. [6, 7, 10]).

DEFINITION 1. Let M be a totally ordered set and f E IRM , the space of all
mappingsfromMto IR. We call n points Xl < ... < xnfromManalternation
off of length n, iff

i = 1,... , n - 1.

We can now state the definition of weak and oriented Tchebyshev-spaces.

DEFINITION 2. Let M be a totally ordered set and U an n-dimensional
subspace of IRM • U is called a weak Tchebyshev-space (or weak T-space for
short), iff no fEU has an alternation of length n + 1. If, in addition, U is a
Tchebyshev-space (T-space), i.e., if no f =F 0 from U has more than n - 1
zeros, we call U an oriented Tchebyshev-space (oriented T-space).

Another characterization of weak and oriented T-spaces comes from the
generalized Vandermonde-determinant

J,\x,) I.
fn(xn)

The following theorem goes back to Zielke [10].

TH:EOREM 1.. Let M be totally ordered and U be an n-dimensional subspace
of IRM • Then the following assertions are equivalent:

(1) U is an oriented T-space.

(2) There is a basis fl ,oo.,fn of U with

det (j~ ,...,fn) > 0
Xl '00" Xn

for arbitrary Xl < ... < Xn in M.

This theorem is an immediate consequence of Theorem 2 below. An
analogous characterization of weak T-spaces in the case of continuous
functions on a real interval was proved by Jones-Karlovitz [1]. We now show
that their assertion is still valid in the more general situation considered here
and therefore our definition of weak T-spaces is in agreement with [2] and [8].
The proof is based on the following lemma.
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LEMMA 1. Let M be totally ordered, U an n-dimensional weak T-space in
~M'/l '''''/n a basis of U and let Zl < ... < Zn-l be points in M such that there

are Xl"'" Xn in M with

and

det (h ,...'/n) =F O.
Xl'"'' X n

LetfE U withf(zi) = 0, i = 1,... , n - 1. Thenfor arbitrary Yi' Yj with

Zi-l < Yi < Zi
Zj-l < Yj < Zj

the inequality

(-I)i+j . f(Yi) . f(Yj) ;3 0

holds. Here we set Zo : = - 00 and Zn := + 00.

Proof Let us assume the contrary: we have Yi' Yj as above with

(-I)i+j . f(Yi) . f(Yj) < O.

Because

det (h ,...,fn ) =F 0
Xl"'" X n

there is an hE U with

h(zk) = (_I)k+i+r • signf(Yi)' I <; k <; n - 1,

where r = I in the case i <; k <; j - I and r = 0 otherwise. Then the
function f + >"h has for sufficiently small >.. > 0 an alternation of length
n + I in the increasingly ordered points Zl ,... , Zn_l ,Yi ,Yj. This contra­
diction ends the proof. I

Note that in the case n = I the lemma simply states that no fEU has an
alternation of length 2.

Lemma 1 is a generalization of the well known fact that a function from an
n-dimensional oriented T-space with n - 1 zeros has constant sign between
these zeros and changes sign at each of them (see [10]). We can now prove a
result for weak T-spaces which is analogous to Theorem 1.

THEOREM 2. Let M be totally ordered and U be an n-dimensional subspace
of ~M. Then the following assertions are equivalent:
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(1) U is a weak T-space.

(2) There is a basis.h ,... ,fn of U with

det (j~ ,... ,fn) ~ 0
Xl"'" X n

for arbitrary Xl < ... < x n in M.

Proof (1) => (2). Letfl ,... ,fn be a basis of U and let Xl < ... < Xn and
YI < ... < Yn be points in M with

det (h ,... ,fn) =1= 0 =1= det (h , ,fn ).
Xl'"'' X n YI , , Yn

We consider the functions gk, 1 ~ k ~ n, with

gk(X) := (det (fl ,· .. ,fn ))-1 .det ( h ,· .. ,fn ).
Xl"'" X n X, Xl'"'' Xk-I • Xk+I ••••• X n

Let there exist ajo with Xi rf= {YI ...., Yn}. Since the gk span U as well, there iso
a Ym with gj (Ym) =1= O. Clearly Ym rf= {Xl"'" Xn}. If we now seto

Zi := Xi for

Zi := X i+I for

Zo:= -00,

and if we set WI < ... < Wn with

i = l, ,jo - 1.

i = jo , , n - 1,

Zn:= +00,

{Wi I i = 1,... , n} = {Zi I i = 1,..., n - I} U {Ym},

from the relation Zi-I < Ym < Zi it follows that

det (h , ,j~) = (_I)i+I • gjo(Ym)' det (j~ ,...In).
11\ , , Wn Xl"'" X n

From Lemma 1 and from the equality

we see that

Therefore the two determinants

det (fl ,...,j~),
Xl,· .. , X n

det (fl ,.. ·,fn )
WI, .. ·, W n
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are of the same sign (~O). Repeated application of this argument shows that
(1) implies (2).

(2) =:> (1). This implication will not be needed in the following; we
therefore refer to [12J for a proof. I

Theorem I now follows immediately from Theorem 2. It is well known
that an n-dimensional subspace U of IRM is a T-space if and only if there is a
basis fl ,... ,fn of U with

det (j~ ,... ,fn) =1= 0
Xl"'" X n

for arbitrary Xl"'" Xn in M (see e.g. [10]).

3. SUBSPACES OF WEAK AN'D ORIENTED TCHEBYSHEV-SPACES

In an earlier paper [6] we have shown the following theorem, which was
proved independently from us and with a different method of proof in the
special case of continuous functions on a compact real interval by Sommer
and Strauss [5J.

THEOREM 3. Let M be totally ordered and U C IRM a weak T-space of
dimension n ~ 2. Then there is a weak T-space V of dimension n - 1 with
VCU.

We now derive from this theorem the following result due to Zalik [8J,
which is an improvement of a theorem of Zielke ([IOJ, see also [6J).

THEOREM 4. Let M be totally ordered without greatest and smallest
element and let U C IRM be an oriented T-space ofdimension n ~ 2. Then there
is an oriented T-space V ofdimension n - 1 with V C U.

Proof By Theorem 3 there is a weak T-space V of dimension n - 1 with
V C U. We will show that V is already an oriented T-space. To do this, let
II ,... ,fn be a basis of Uwith the following properties: (l)h ,... ,fn-l is a basis
of V with

for arbitrary Xl < ... < Xn-l (see Theorem 2), (2) for arbitrary Xl < ... < X"

we have

det (h ,...In) > 0
Xl'·'" Xn
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(see Theorem I). Let us assume there are Yl < ... < Yn-l in M with

det (fl , ,fn-l) = o.
Yl , , Yn-l

We choose Yn > Yn-l and conclude from

det (II ,... ,fn) > 0
Yl,···,Yn

that there is an io with

det ( II ,· .. ,fn-l ) > o.
Yl ,... , Yio-l , Yio+l ,... , Yn

Let

f(x) := det ( II ,.. ·,fn ).
Yl ,..., Yio-l , Yio+l ,..., Yn , X

Then fE U and fl ,... ,fn-l ,f is another basis of U with property (2). Let
Yo < Yl . If we now use the relations

for j = I, ... , n - I, j =1= io ,

and our assumption and expand by the last column we get

o < det (fl ,.. ·,fn-l ,f)
Yo ,... , Yn-l

= (_It+io+1 • f(Yio) . det ( fl, .. ·,fn-l ).
Yo ,... , Yio-l , Yio+1 , ... , Yn-l

But since the right side of the last equation is not positive, we have a
contradiction. I

The proof of Theorem 4 shows that any (n - I)-dimensional subspace of
an n-dimensional oriented T-space is again an oriented T-space, provided it is
a weak T-space and the domain of definition has no greatest and no smallest
element.

4. REMARKS AND APPLICATION'S

If M is a real interval and U an n-dimensional vectorspace of continuous
functions on M, then U is an oriented T-space if and only if U is aT-space.
Thus Theorem 4 is a generalization of the result by Krein (see [3]) mentioned
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above. Repeated application of Theorem 3 shows that every weak T-space of
dimension n has a basis 11 ,...J" such that, for any k with 1 ~ k ~ n, the
functionsh ,...,fk span a weak T-space. Similarly, if the domain of definition
has no smallest and no greatest element, from Theorem 4 there follows the
analogous result for oriented T-spaces. From these remarks one can easily
deduce the following theorem on the existence of nonnegative and positive
functions in weak and oriented T-spaces.

THEOREM 5. Let M be totally ordered and let U C IRM be a weak T-space.
Then there is an I =F 0 in U with I ;;;, O. If M has no smallest and no greatest
element and if U is an oriented T-space in IRM , there is an I in U with I > O.

There is a further application in this direction. The following result can
also be derived from the Tchebyshev Equioscillation Theorem (see [4]). But
when it is shown with interpolation methods only, it can serve as a starting
point for a proof of the theorem by Tchebyshev.

THEOREM 6. Let U be a T-space in qa, b]. Then there is an IE U with

1>0.
Proof By Theorem 5 there is a nontrivial/in U with I ;;;, O. If Xl'"'' X r

are the zeros off, then r ~ n - 1 and we can choose g E U with g(Xi) = 1,
i = 1,... , r. Then, for sufficiently great" > 0 we have V + g > 0 on
[a, b]. I

Theorem 6 is not valid in the case of halfopen intervals as shown by the
simple example Uo = span{sin, cos} in C[O, 1T[. It should be noted that,
in general, there is no basish ,... ,f" of U with the property thath '''',fk span
a T-space for 1 ~ k ~ n if U is a T-space in qa, b[ or qa, b]. For various
examples in this connection see [11]. We also refer to a paper of Zielke [9]
which contains a result on subspaces of periodic Tchebyshev-spaces.
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